Real-Life Discovery of Mathematical Constant e by Bernoulli

The mathematician Jacob Bernoulli (1654-1705) tried to find out what happened if interest is compounded continuously for P = \$1, n = 1 year and R = 100 (i.e., 100% annual interest). So the formula simplifies to:

$$A = \left(1 + \frac{1}{k}\right)^k$$

where A is the amount at the end of one year and k is the number of compounding intervals within the year.

1. Use a calculator to fill in the following table, leaving your answers to 5 decimal places where applicable.

k	$A = \left(1 + \frac{1}{k}\right)^k$	k	$A = \left(1 + \frac{1}{k}\right)^k$
1	$\left(1+\frac{1}{1}\right)^{1}=2$	1000	
2	$\left(1+\frac{1}{2}\right)^2 =$	10 000	
3	$\left(1+\frac{1}{3}\right)^3 =$	100 000	
10	$\left(1+\frac{1}{10}\right)^{10}=$	1 000 000	
100		10 000 000	

2. What do you notice about the value of $A = \left(1 + \frac{1}{k}\right)^k$ as k becomes very big? What is its *final* value correct to 5 decimal places?

This is called the **mathematical constant** *e*.

- 3. Is the final amount *A* very big compared to P =\$1 at 100% annual interest compounded continuously?
- 4. Which one of the following has a greater effect: interest compounded continuously or a higher interest rate? Why?